일반대학원 전자정보융합공학과 교육과정시행세칙

제1조(목적) ① 이 시행세칙은 상기 대학원 학과의 학위 취득을 위한 세부요건을 정함을 목적으로 한다.

② 학위를 취득하고자 하는 자는 학위취득에 관하여 대학원학칙, 대학원학칙시행세칙, 대학원내규에서 정한 사항 및 본 시행세칙에서 정한 사항을 모두 충족하여야 한다.

제2조(교육목표) ① 학과 교육목표는 다음과 같다.

- 1. 기초핵심교육: 기초·핵심교육 강화로 지속성장 가능한 전자정보융합공학 전문가 양성
- 2. 자기주도교육: PBL·토론중심 능동형 교육을 통한 지식창조 선도인재 양성
- 3. 창의융합교육: 교차융합 교육을 통한 가치창출 전자정보융합공학 리더 양성
- 4. 산업혁신교육: 산학·글로벌 연계교육 강화로 신산업을 주도할 혁신인재 양성

제3조(진로취업분야) ① 학과의 진로취업분야는 다음과 같다.

- 1. 장비 및 단말 산업: 휴대폰, 기지국, 차량/드론용 단말, 테블릿/TV, AR/VR 기기
- 2. 서비스 산업: 통신, 방송, 콘텐츠, 스마트 공장 등 다양한 사물인터넷 서비스
- 3. 소자 산업: RF회로, 안테나 등 통신 부품, 센서, 배터리, 웨어러블 소자
- 4. 의료 바이오 산업: 인공지능 휴먼케어 및 비대면 원격진단 서비스, 체외진단용 바이오센서

제4조(교육과정기본구조) ① 학과의 과정별 수료에 필요한 학점은 다음과 같다.

[표1] 교육과정기본구조표

과정	전공필수	전공선택	공통과목	수료학점	비고
석사	0학점	24학점	0학점	24학점	
박사	0학점	26학점	0학점	36학점	
석박통합	0학점	60학점	0학점	60학점	

제5조(교과과정) ① 교과과정은 다음과 같다.

1. 교과과정 : <별표1. 교육과정 편성표> 참조

2. 교과목개요 : <별표2. 교과목 해설> 참조

제6조(선수과목) ① 다음에 해당하는 자는 아래와 같이 선수과목을 이수하여야 한다.

- 1. 대상자 : 전공명 상이 또는 특수대학원 졸업자
- 2. 선수과목 이수학점 : 석사과정 9학점, 석박통합과정 12학점, 박사과정 12학점
- 3. 선수과목 목록 : <별표3. 선수과목 목록표> 참조
- ② 제1항에도 불구하고 하위 학위과정에서 이수한 과목의 학점을 소정의 학점인정서에 지도교수와 학과장의 확인을 거쳐 대학원장의 승인을 받은 경우는 추가 이수학점의 일부 또는 전부를 면제받을 수 있다.

제7조(타학과 과목 인정) ① 지도교수의 승인을 받아 타 학과의 전공과목을 수강할 수 있으며, 취득한 성적은 전 공선택 학점으로 인정받을 수 있다.

제8조(졸업 요건) ① 졸업 요건은 다음과 같다.

- 1. 대상자 : 2021년도 8월 졸업대상자부터 시행
- 2. 졸업 요건 :

전공이수학점, 학위자격시험, 논문심사를 위한 논문게재 실적 규정 및 논문심사 통과를 만족해야 한다.

3. 외국인 학생의 졸업 요건 :

전공이수학점, 학위자격시험, 논문심사를 위한 논문게재 실적, 외국인의 논문게재, 외국인의 학과참여 규정 및 논문심사 통과를 만족해야 한다.

제9조(전공이수학점) ① 전자정보융합공학과의 학위를 취득하고자 하는 학생은 본 시행세칙에서 지정한 소정의 학점을 이수하여야 한다.

② 전자정보융합공학과의 교과목은 전공필수와 전공선택으로 구분하여 개설한다.

제10조(학부개설과목 이수) ① 학부에서 개설한 과목은 전공과목으로 인정하지 아니한다.

제11조(공통과목 이수) ① 대학원에서 전체대학원생을 대상으로 "공통과목"을 개설하는 경우 지도교수 및 학과 장의 승인을 거쳐 수료(졸업)학점으로 인정받을 수 있다.

제12조(입학전 이수학점 및 타대학원 취득학점 인정) ① 입학 전 동등학위과정에서 이수한 학점인정 및 국내외 타대학교 대학원에서 이수한 학점 인정 등은 경희대학교 대학원 학칙에 따른다.

제13조(최소수료학점) ① 전자정보융합공학과의 최소수료학점은 추가선수학점 및 논문지도학점을 제외하고 석사 24학점, 박사 36학점, 석박통합은 60학점, 석박통합과정생의 석사학위과정 수료학점은 30학점이다.

② 수료에 필요한 학점인정은 경희대학교 대학원 학칙과 본 교육과정 시행세칙에 의한다.

제14조(학위자격시험)

① 학위자격시험(공개발표)를 통과해야 한다.

제15조(논문심사를 위한 논문게재실적) ① 일반대학원에 학위청구논문을 제출하기 위해서는 논문심사일 이전에 학위청구논문을 제외한 논문을 발표한 실적이 있어야 하며 일반대학원 내규를 따른다.

제16조(외국인의 논문게재) ① 외국인은 논문게재(졸업요건)시 지도교수명을 해당논문에 명기하여야 한다.

제17조(외국인의 학과참여) ① 외국인은 개별학습 외에, 학과내(지도교수중심) 과제에도 참여하여야 한다.

[부칙 1]

- ① 시행일: 2020.07.01
- ② 경과조치: 본 세칙 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 새로운 교육과정을 적용 받을 수 있다.

[부칙 2]

- ① 시행일: 본 내규는 2021년 3월 1일부터 시행한다.
- ② 경과조치: 본 내규 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 새로운 교육 과정을 적용 받을 수 있다.

<별표1> 교육과정 편성표

이수		7 7 B B	ᅔᅜ		개설주		학기별 운영		
구분	교과구분	교과목명	학점	1	2	3	4	(12/13강좌)	
	TI 7 7 1 +	공학논문작성 및 발표	3		0				
	전공기초	지적재산권과 연구윤리	3				0	a (a 71 T)	
	T. 7.0.7	석사논문연구	3	0	0	0	0	2/3강좌	
	전공연구	박사논문연구	3	0	0	0	0		
		통신수학1	3	0			-	2강좌 (2강사/강좌)	
		통신수학2	3			0			
		디지털통신시스템	3		0				
		통신신호처리	3			0			
	전공핵심	인공지능	3				0		
		전자기학 및 초고주파	3		0				
		통신집적회로	3			0			
		광전자 및 광통신	3	0					
		생체신호계측	3						
							0		
		무선통신	3			0			
		이동통신시스템	3	0					
		무선통신네트워크	3		0				
	전공심화	초실감미디어시스템	3				0		
전		최적화이론 및 응용	3		0				
공		머신러닝 및 패턴인식	3	0				3강좌	
선		정보 및 코딩이론	3				0		
_ 택		고급전자기학	3			0			
•		안테나공학	3				0		
		RF집적회로설계	3		0				
		양자전자공학	3		0				
		생체광학 및 센서기술	3	0					
	전공융합	무선통신융합	3	0					
		무선네트워크융합	3		0				
		양자통신융합	3			0			
		무선에너지융합	3	0					
		통신회로융합	3				0		
		통신센서융합	3			0			
		휴먼ICT융합	3		0			e 21 ±1	
		미래통신융합공학	3				0	5강좌 (3강사이상/강좌)	
		융합미래통신프로젝트1	3	0		0			
		융합미래통신프로젝트2	3		0		0		
		융합미래통신현장실습1	1		0		0		
		융합미래통신현장실습2	1	0		0			
		융합미래통신콜로키움1	3		0		0		
		융합미래통신콜로기움2	3	0		0			
	기타사항	참여교수 의무강의: 3학점/년 박사/석사논문연구: 교육연구단장/학 융합미래통신프로젝트/콜로키움: 연-	·과장		. al	1 5	1		

공학논문작성 및 발표 (Engineering Paper Writing and Presentation)

본 과목은 영어공학논문 작성과 서술방법, 효과적인 발표기법을 학습함

This course covers scientific writing skills and effective presentation skills.

지적재산권과 연구윤리 (Intellectual Property Rights and Research Ethics)

본 과목은 특허명세서 작성과 관련 법규. 연구윤리 전반에 대해 학습함

This course covers patent drafting and related laws, as well as overall research ethics.

석사논문연구 (Master Thesis Research)

본 과목은 융합미래통신 분야 석사학위 연구를 위해 지도교수 연구지도로 진행됨

Students are advised by their advisors for MS degree thesis on emerging communication convergence technologies.

박사논문연구 (Doctoral Dissertation Research)

본 과목은 융합미래통신 분야 박사학위 연구를 위해 지도교수 연구지도로 진행됨

Students are advised by their advisors for PhD degree thesis on emerging communication convergence technologies.

통신수학1 (Communication Mathematics I)

본 과목은 통신응용 확률론, 랜덤신호, 검출, 추정 개념모듈별 전문교육으로 진행됨

This course covers statistics topics on communications, including probability theory, random signals, detection and inference, and so on.

통신수학2 (Communication Mathematics II)

본 과목은 통신응용 선형대수, 선형·비선형최적화 개념모듈별 전문교육으로 진행됨

This course covers applied mathematics topics on communications, including linear algebra, linear and nonlinear optimization, and so on.

디지털통신시스템 (Digital Communication Systems)

본 과목은 디지털 통신 기본 이론과 디지털통신 시스템 설계 기초 개념모듈별 전문교육으로 진행됨

This course covers basic principles and designs of digital communication systems.

통신신호처리 (Signal Processing for Communications)

본 과목은 디지털 신호처리와 통신 신호처리 기법에 대한 기초 개념모듈별 전문교육으로 진행됨

This course covers digital signal processing and signal processing techniques for communications.

인공지능 (Artificial Intelligence)

본 과목은 머신러닝, 패턴인식 및 인공지능 기초 개념모듈별 전문교육으로 진행됨

This course covers fundamental topics on artificial intelligence, including machine learning and pattern recognition.

전자기학 및 초고주파 (Electromagnetics and Microwave Engineering)

본 과목은 전자기학, 초고주파회로 해석·설계 개념모듈별 전문교육으로 진행됨

This course covers academic modules including electromagnetics, microwave circuit analysis and design.

통신집적회로 (Communication Integrated Circuits)

본 과목은 통신변조, 아날로그 회로, RF회로 개념모듈별 전문교육으로 진행됨

This course covers essential circuit components used for communication such as signal modulation, analog circuits, and RF circuits.

광전자 및 광통신 (Optoelectronics and Optical Communication)

본 과목은 광및반도체, 광통신, 통신용 광전자소자 개념모듈별 전문교육으로 진행됨

This course covers academic modules on optical communication including optics and semiconductors, and optoelectronic devices.

생체신호계측 (Biosignal Measurements)

본 과목은 계측용 센서, 신호처리, 생체모델링 개념모듈별 전문교육으로 진행됨

This course covers biosignal measurement techniques including measurement sensors, signal processing, and biosystems modeling.

무선통신 (Wireless Communication)

본 과목은 최신 무선통신 기법 심화학습과 실제 응용에 대한 PBL 강의로 진행됨

This course contains a series of PBL type lectures on wireless communication and its applications.

이동통신시스템 (Mobile Communication Systems)

본 과목은 이동통신시스템과 표준에 관련하여 산학협력을 통한 PBL 강의로 진행됨

This course contains a series of PBL type lectures with industrial collaborations on mobile communication systems and standardization.

무선통신네트워크 (Wireless Networks)

본 과목은 무선 및 이동 네트워크에 대한 심화학습과 최신 기술에 대해 PBL 강의로 진행됨

This course contains a series of PBL type lectures on wireless and mobile networks and their recent developments.

초실감미디어시스템 (Immersive Media Systems)

본 과목은 유무선 통신에서의 증강·가상현실 응용에 대한 PBL 강의로 진행됨

This course contains a series of PBL type lectures on AR/VR applications on wired/wireless communications.

최적화이론 및 응용 (Optimization Theory and Applications)

본 과목은 최적화이론의 심화내용과 통신 및 기타 응용에 대한 PBL 강의로 진행됨

This course contains a series of PBL type lectures on mathematical optimization theory and its applications on communication systems and other engineering disciplines.

머신러닝 및 패턴인식 (Machine Learning and Pattern Recognition)

본 과목은 머신러닝과 패턴인식 심화내용과 응용에 대한 PBL 강의로 진행됨

This course contains a series of PBL type lectures on machine learning and its applications on pattern recognition.

정보 및 코딩이론 (Information and Coding Theory)

본 과목은 통신시스템 성능분석과 성능향상을 위한 정보이론과 코딩이론을 학습함

This course covers information and coding theory used for performance analysis and performance improvement of communication systems.

고급전자기학 (Advanced Electromagnetics)

본 과목은 무선통신의 전자파 분포 및 전파에 대한 다양한 해석적 방법을 학습함

This course covers a variety of analytic techniques for understanding electromagnetic wave distribution and propagation.

안테나공학 (Antenna Engineering)

본 과목은 안테나공학 이론을 기반으로 배열안테나를 설계하는 PBL 강의로 진행됨

This course contains a series of PBL type lectures on antenna engineering and array antenna design.

RF집적회로설계 (RF Integrated Circuit Design)

본 과목은 RF 회로설계 및 무선통신시스템 구현에 대한 PBL 강의로 진행됨

This course contains a series of PBL type lectures on RF circuit design and wireless communication systems implementation.

양자전자공학 (Quantum Electronics)

본 과목은 양자역학의 심화학습과 광학과 레이저 응용에 대한 PBL 강의로 진행됨

This course contains a series of PBL type lectures on applied quantum electronics, optics, and laser applications.

생체광학 및 센서기술 (Biophotonics and Biosensor Technology)

본 과목은 광학 기술의 바이오 센서 시스템에의 응용에 대한 PBL 강의로 진행됨

This course contains a series of PBL type lectures on optics applications to biophotonics and biosensor systems.

무선통신융합 (Wireless Communication Convergence)

본 과목은 5G, 테라헤르츠, 머신러닝응용 개념모듈별 융합교육으로 진행됨

This course covers convergence engineering technologies from 5G technologies, terahertz waves, and machine learning applications.

무선네트워크융합 (Wireless Network Convergence)

본 과목은 통신네트워크, 인공지능, 최적화응용 개념모듈별 융합교육으로 진행됨

This course covers convergence engineering technologies from communication networks, artificial intelligence, applied optimization, and so on.

양자통신융합 (Quantum Communication Convergence)

본 과목은 양자물리, 정보이론, VLC, 양자통신 개념모듈별 융합교육으로 진행됨

This course covers convergence engineering technologies from quantum physics, VLC, quantum communication, and so on.

무선에너지융합 (Wireless Energy Convergence)

본 과목은 무선전력전송, 에너지하베스팅 개념모듈별 융합교육으로 진행됨

This course covers convergence engineering technologies from wireless power transmission, energy harvesting, and so on.

통신회로융합 (Communication Circuit Convergence)

본 과목은 5G, 테라헤르츠, 초고주파회로에 대한 개념모듈별 융합교육으로 진행됨

This course covers convergence engineering technologies from 5G technologies, terahertz wave, microwave circuits, and so on.

통신센서융합 (Communication Sensor Convergence)

본 과목은 저전력통신, 웨어러블센서, 생체인터넷 개념모듈별 융합교육으로 진행됨

This course covers convergence engineering technologies from low-power communication, wearable sensors, and biomedical IoT devices

휴먼ICT융합 (Human ICT Convergence)

본 과목은 5G, ICT 및 인공지능 기반 휴먼케어에 대한 개념모듈별 융합교육으로 진행됨

This course covers convergence engineering technologies from 5G technologies and Al-based human-care technologies.

미래통신융합공학 (Future Communication Convergence Engineering)

본 과목은 융합미래통신 전 분야에 대한 개념모듈별 통섭교육으로 진행됨

This course covers miscellaneous convergence engineering technologies on emerging communication fields.

융합미래통신프로젝트1 (Convergence Future Communication Project I)

본 과목은 팀기반으로 기초융합문제를 해결하기 위해 PBL기반 능동학습으로 진행됨

This course is based on active PBL type team projects for solving fundamental issues in convergence future communication technologies.

융합미래통신프로젝트2 (Convergence Future Communication Project II)

본 과목은 팀기반으로 심화융합문제를 해결하기 위해 PBL기반 능동학습으로 진행됨

This course is based on active PBL type team projects for solving advanced problems in convergence future communication technologies.

융합미래통신현장실습1 (Convergence Future Communication Field Practice I)

본 과목은 국내외 산업체·대학 연계 과정을 기반으로 한 연구 및 학습으로 진행됨

This course is based on research and learning from collaborations with domestic and international collaborators.

융합미래통신현장실습2 (Convergence Future Communication Field Practice II)

본 과목은 국내외 산업체·대학 연계 과정을 기반으로 한 연구 및 학습으로 진행됨

This course is based on research and learning from collaborations with domestic and international collaborators.

융합미래통신콜로키움1 (Convergence Future Communication Colloquium I)

본 과목은 융합미래통신 분야 최신이론과 산업동향을 논의하는 세미나로 진행됨

This colloquium contains a series of seminars discussing the current theoretical developments and industrial trends on convergence future communication technologies.

융합미래통신콜로키움2 (Convergence Future Communication Colloquium II)

본 과목은 융합미래통신 분야 최신이론과 산업동향을 논의하는 세미나로 진행됨

This colloquium contains a series of seminars discussing the current theoretical developments and industrial trends on convergence future communication technologies.

※ 교육과정 편성표와 같은 순서로 작성

<별표3> 선수과목 목록표

번호	과목명	개설학과	학점	인정이수구분	대상학위과정
1	전공필수 교과목	전자공학과(학부)	3	선수과목	석사과정 석박통합과정
2	전공필수 교과목	생체의공학과(학부)	3	선수과목	석사과정 석박통합과정
3	전공선택 교과목	전자정보융합공학과 (대학원)	3	선수과목	박사과정 석박통합과정
4	전공선택 교과목	전자공학과(대학원)	3	선수과목	박사과정 석박통합과정
5	전공선택 교과목	생체의공학과(대학원)	3	선수과목	박사과정 석박통합과정